

Program Objective

Demonstrate a leap-ahead EM Gun armament system that proves the maturity of the technology for future combat systems

Army EM Gun Program Challenges

Pulsed Power

Increased energy density of rotating machines:

- Material strength
- Efficiency
- Thermal management

Launch Package

Robust lethality against future threats:

- Reduced parasitic mass
- Armature operation

Switching

Reduced volume and weight:

- Si & SiC development
- Efficient packaging
- Thermal management

Robust Launcher

Robust "fieldable" launcher:

- Wear life material hardness
- Efficiency energy recovery
- Thermal management cooling

Current armament system is ~3 tons heavier than equivalent ETC system

Significant Engineering Challenges - Physics Works

Army EM Gun Program Advantages

- Improved lethality from adjustable velocity (including hypervelocity)
- Stealth launch
- Reduced logistics eliminate chemical propellant; smaller weight/volume rounds
- Improved survivability eliminate chemical propellants
- Synergism with system: electric protection, electric propulsion, electric weapon
- Shorter time of flight accuracy
- Lethal from muzzle to extended ranges

A lethal armament for future combat systems

Pulsed Power Research Program ##_

The Pulsed Power research effort is focusing on the following critical tasks:

Synchronization and control of pulsed alternator pairs.

Advanced switching concepts:

- Silicon Carbide
- Optical Triggering
- Opening Switches

Hypervelocity Lethality Accomplishments

IAT Novel Kinetic Energy Penetrator (NKEP) Defeated Target at Low Impact Energy

IAT has Developed Analytic and Experimental Methodology to Solve Ablation Problem

Hypervelocity Lethality Plans

Extending Penetrators

New geometries and optimization studies.

Guidance & Control

Progress with Hypervelocity Launch

- Hypervelocity Gouging: A major show stopper identified in 1995 has been resolved.
 - We now have a scientific understanding of the phenomenon and predictive capability.
 - Robust engineering solutions involve use of hard cladding.
 - Gouge-free railgun operation demonstrated to 2.85 km/s.

Muzzle radiograph from experiments to measure gouging threshold velocities of various materials.

- <u>Muzzle Signature Suppression</u> can be performed effectively using an Inductive Muzzle Shunt.
 - Three generations of shunts tested at IAT.
 - EM Spectral measurements demonstrated the possibility of operation EML in ultra-low signature mode.
 - Significantly less EM than conventional guns.
 - Current research at IAT
 - Use of Inductive Shunt to recover energy from EML
 - Shunt armature interaction to stabilize armature.

- Transition to Arcing Contact is a difficult problen is within reach (~2years).
 - We understand the phenomenon (multiple cause identified) Modeling capabilities being developed.
 - Actively exploring design solution.

Progress with Hypervelocity Launch

- Integrated Launch Package Development
 - Tungsten Rods successfully launched from our EM launcher.

- Thermal Structural Modeling
 - EMAP3D

- 1999 -2001 Paralelization of EMAP3D on Beowolf PC Cluster made it a comprehensive design and detail analysis tool.
- 2001 Plasticity Module expand EMAP3D application further.

Hybrid BE PE Formulation facilitates strong mechanical electromagnetic

- Largest operational EM research facility,
 13MJ Power Supply
- Over 250 test supporting EML research
- Upgrade planned for 2001 with double the muzzle energy and add two new launcher

Systems & Technology Integration

EM Gun System Performance Analysis – Software Development

Vehicle Performance – POWERSIM Model validated with Hybrid Electric HMMWV tests *

DARPA Support*

- CHPS IMPACT Toolbox completed & made available to government and industry
- RSTV Provided modeling and technical analysis to PM

* DARPA Funding

Army EM Gun Program

Technical Support

- Basic 6.1 Research
- Integral Member of ARL Program Office/Team

- Technology Development
- Technology Component Development
- Technology Integration

Summary

- Major Leap Ahead Technology for the Future
- Offers Enhanced Lethality & Survivability for Future Combat Systems
- Technology is sufficiently mature to move forward with a demonstration program
- May not meet timeline for FUE but should be a key technology for Block I upgrade

